Comparison of B-spline Method and Finite Difference Method to Solve BVP of Linear ODEs

نویسندگان

  • Jincai Chang
  • Qianli Yang
  • Long Zhao
چکیده

B-spline functions play important roles in both mathematics and engineering. To describe a numerical method for solving the boundary value problem of linear ODE with second-order by using B-spline. First, the cubic B-spline basis functions are introduced, then we use the linear combination of cubic B-spline basis to approximate the solution. Finally, we obtain the numerical solution by solving tri-diagonal equations. The results are compared with finite difference method through two examples which shows that the B-spline method is feasible and efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems

In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

Cubic spline Numerov type approach for solution of Helmholtz equation

We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Spline Collocation for system of Fredholm and Volterra integro-differential equations

The spline collocation method  is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011